Demand System Asset Pricing A micro-founded asset demand system

Ralph S.J. Koijen^a Motohiro Yogo^b

^aUniversity of Chicago, Booth School of Business, NBER, and CEPR

^bPrinceton University and NBER

Towards an empirically-tractable model of demand

- ► Wish list for our model:
 - 1. Nests modern portfolio theory as a special case.
 - 2. Empirically tractable.
 - 3. Sufficiently flexible to allow for inelastic demand curves.

Towards an empirically-tractable model of demand

- Wish list for our model:
 - 1. Nests modern portfolio theory as a special case.
 - 2. Empirically tractable.
 - 3. Sufficiently flexible to allow for inelastic demand curves.
- Standard mean-variance portfolio choice implies

$$w = \frac{1}{\gamma} \Sigma^{-1} \mu.$$

If we model µ(n) as a function of characteristics of stock n, x(n), as in modern empirical asset pricing, it seems intractable as characteristics of all stocks matter (via Σ⁻¹).

Towards an empirically-tractable model of demand

- Wish list for our model:
 - 1. Nests modern portfolio theory as a special case.
 - 2. Empirically tractable.
 - 3. Sufficiently flexible to allow for inelastic demand curves.
- Standard mean-variance portfolio choice implies

$$w = \frac{1}{\gamma} \Sigma^{-1} \mu.$$

- If we model µ(n) as a function of characteristics of stock n, x(n), as in modern empirical asset pricing, it seems intractable as characteristics of all stocks matter (via Σ⁻¹).
- Key insight: Solution simplifies under realistic assumptions to

$$w(n)=\frac{b'x(n)}{c},$$

where c encodes the information of all other stocks.

Various micro-foundations lead to a demand system

Various micro-foundations.

- Mean-variance portfolio choice (Markowitz 1952).
- Portfolio choice with hedging demand (Merton 1973).
- Private information and imperfect competition (Kyle 1989).
- Heterogeneous beliefs.
- Institutional asset pricing with constraints.
- Direct preferences for characteristics such as ESG.
- Can be expressed as the same portfolio demand function (see KRY23).
- However, demand elasticities depend on structural parameters in different ways.

Investor types, preferences, and technology

We consider two broad classes of investors: Quants and Fundamental investors.

Investor types, preferences, and technology

- We consider two broad classes of investors: Quants and Fundamental investors.
- We have $i = 1, ..., I_x, x = Q, F$, investors of each type.

Investors have CARA preferences

$$\max_{\mathbf{q}_i} \mathbb{E}\left[-\exp\left(-\gamma_i A_{1i}\right)\right],$$

with risk aversion coefficients $\gamma_i = \frac{1}{\tau_i A_{i0}}$ and initial assets A_{i0} .

Investor types, preferences, and technology

- We consider two broad classes of investors: Quants and Fundamental investors.
- We have $i = 1, ..., I_x, x = Q, F$, investors of each type.
- Investors have CARA preferences

$$\max_{\mathbf{q}_i} \mathbb{E}\left[-\exp\left(-\gamma_i A_{1i}\right)\right],$$

with risk aversion coefficients $\gamma_i = \frac{1}{\tau_i A_{i0}}$ and initial assets A_{i0} .

- ▶ Investors allocate capital to *n* = 1,..., *N* assets.
- Intra-period budget constraint:

$$A_{0i} = \boldsymbol{q}_i' \boldsymbol{P}_0 + Q_i^0,$$

Dividends are given by D₁, which equal P₁ in a static model.

Beliefs: Quant investors (KY19)

• Let $\boldsymbol{R}_1 = \boldsymbol{P}_1 - \boldsymbol{P}_0$ be the (dollar) return.

Quants reason in terms of factor models and try to discover alpha as a function of asset characteristics

$$\begin{aligned} \boldsymbol{R}_1 &= \boldsymbol{a}_i + \boldsymbol{\beta}_i \boldsymbol{R}_1^m + \boldsymbol{\eta}_1, \\ \boldsymbol{\mu}_i &= \boldsymbol{\alpha}_i + \boldsymbol{\beta}_i \boldsymbol{\Lambda}, \end{aligned}$$

where $\boldsymbol{\mu}_i = \mathbb{E}_i \left[\boldsymbol{R}_1 \right]$ and $\operatorname{Var} \left(\boldsymbol{\eta}_1 \right) = \sigma^2 \boldsymbol{I}$.

Hence, the covariance matrix of returns is

$$\boldsymbol{\Sigma}_i = \boldsymbol{\beta}_i \boldsymbol{\beta}_i' + \sigma^2 \boldsymbol{I}.$$

Beliefs: Quant investors (KY19)

• Let $\boldsymbol{R}_1 = \boldsymbol{P}_1 - \boldsymbol{P}_0$ be the (dollar) return.

Quants reason in terms of factor models and try to discover alpha as a function of asset characteristics

$$\begin{aligned} \boldsymbol{R}_1 &= \boldsymbol{a}_i + \boldsymbol{\beta}_i \boldsymbol{R}_1^m + \boldsymbol{\eta}_1, \\ \boldsymbol{\mu}_i &= \boldsymbol{\alpha}_i + \boldsymbol{\beta}_i \boldsymbol{\Lambda}, \end{aligned}$$

where $\boldsymbol{\mu}_i = \mathbb{E}_i \left[\boldsymbol{R}_1 \right]$ and $\operatorname{Var} \left(\boldsymbol{\eta}_1 \right) = \sigma^2 \boldsymbol{I}$.

Hence, the covariance matrix of returns is

$$\boldsymbol{\Sigma}_i = \boldsymbol{\beta}_i \boldsymbol{\beta}_i' + \sigma^2 \boldsymbol{I}.$$

Key: Alphas and betas are affine in characteristics,

$$\begin{aligned} \beta_i(n) &= \lambda_i^{\beta'} \mathbf{x}(n) + \nu_i^{\beta}(n), \\ \alpha_i(n) &= \lambda_i^{\alpha'} \mathbf{x}(n) + \nu_i^{\alpha}(n). \end{aligned}$$

Beliefs: Fundamental investors (KRY23)

- Let $\boldsymbol{R}_1^F = \boldsymbol{D}_1 \boldsymbol{P}_0$ be the long-run fundamental return.
- Fundamental investors think about the long-run expected growth rate of fundamentals and their riskiness

$$\boldsymbol{D}_1 = \boldsymbol{g}_i + \boldsymbol{\rho}_i \boldsymbol{F}_1 + \boldsymbol{\epsilon}_1,$$

where $\operatorname{Var}(\boldsymbol{\epsilon}_1) = \sigma^2 \boldsymbol{I}$.

Hence, the covariance matrix of long-horizon returns is

$$\boldsymbol{\Sigma}_{i}^{F} = \boldsymbol{\rho}_{i}\boldsymbol{\rho}_{i}^{\prime} + \sigma^{2}\boldsymbol{I}.$$

Beliefs: Fundamental investors (KRY23)

- ▶ Let $\boldsymbol{R}_1^F = \boldsymbol{D}_1 \boldsymbol{P}_0$ be the long-run fundamental return.
- Fundamental investors think about the long-run expected growth rate of fundamentals and their riskiness

$$\boldsymbol{D}_1 = \boldsymbol{g}_i + \boldsymbol{\rho}_i \boldsymbol{F}_1 + \boldsymbol{\epsilon}_1,$$

where $\operatorname{Var}(\boldsymbol{\epsilon}_1) = \sigma^2 \boldsymbol{I}$.

Hence, the covariance matrix of long-horizon returns is

$$\boldsymbol{\Sigma}_{i}^{\boldsymbol{F}} = \boldsymbol{\rho}_{i}\boldsymbol{\rho}_{i}^{\prime} + \sigma^{2}\boldsymbol{I}.$$

 Key: Factor loadings and expected growth are affine in characteristics,

$$\begin{aligned} \rho_i(n) &= \lambda_i^{\rho'} \mathbf{x}(n) + \nu_i^{\rho}(n), \\ g_i(n) &= \lambda_i^{g'} \mathbf{x}(n) + \nu_i^{g}(n). \end{aligned}$$

Demand curves

The quant's optimal portfolio is

$$\boldsymbol{q}_i^Q = \frac{1}{\gamma_i} \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i.$$

The optimal portfolio of the fundamental investor is

$$\boldsymbol{q}_{i}^{F}=rac{1}{\gamma_{i}}\left(\boldsymbol{\Sigma}_{i}^{F}
ight)^{-1}(\boldsymbol{g}_{i}-\boldsymbol{P}_{0}).$$

Key insight

In both cases, the demand curve takes the form

$$\boldsymbol{q}_{i}=rac{1}{\gamma}\left(\boldsymbol{v}_{i}\boldsymbol{v}_{i}^{\prime}+\sigma^{2}\boldsymbol{I}
ight)^{-1}\boldsymbol{m}_{i}.$$

Key insight

In both cases, the demand curve takes the form

$$\boldsymbol{q}_i = rac{1}{\gamma} \left(\boldsymbol{v}_i \boldsymbol{v}'_i + \sigma^2 \boldsymbol{I}
ight)^{-1} \boldsymbol{m}_i.$$

Using the Woodburry matrix identity, we have

$$\begin{aligned} \boldsymbol{q}_{i} &= \frac{1}{\gamma \sigma^{2}} \left(\boldsymbol{I} - \frac{\boldsymbol{v}_{i} \boldsymbol{v}_{i}'}{\boldsymbol{v}_{i} + \sigma^{2}} \right) \boldsymbol{m}_{i} \\ &= \frac{1}{\gamma \sigma^{2}} \left(\boldsymbol{m}_{i} - c_{i} \boldsymbol{v}_{i} \right), \end{aligned}$$

where $c_i = \frac{\mathbf{v}_i' \mathbf{m}_i}{\mathbf{v}_i' \mathbf{v}_i + \sigma^2}$ is a scalar that encodes the information of all other stocks.

- The demand for stock n only depends on the characteristics of stock n and a common scalar, c_i.
- Intuition: The factor exposure and alpha are sufficient statistics for the attractiveness of stock n.

Three implementations of the mean-variance portfolio

- Estimate mean-variance portfolio among stocks in the S&P 500 index, subject to short-sale constraints.
 - 1. Benchmark: Unrestricted mean and covariance matrix.
 - 2. Factor structure: Impose FF 5-factor model on mean and covariance.
 - 3. Characteristics: Exponential-linear function of characteristics.

		Factor	
Statistic	Benchmark	structure	Characteristics
Mean (%)	1.1	1.5	1.5
Standard deviation (%)	4.3	6.2	5.9
Certainty equivalent (%)	1.0	1.3	1.3
Correlation:			
Factor structure	0.54		
Characteristics	0.50	0.93	

Empirical regularity: Holdings are log-normally distributed

An empirically tractable asset demand system

- ▶ Investors select stocks in a choice set $N_i \subset \{1, ..., N\}$.
- The portfolio weight on stock n is

$$w_i(n) = rac{\delta_i(n)}{1 + \sum_{m \in \mathcal{N}_i} \delta_i(m)},$$

where

$$\delta_i(n) = \exp(b_{0,i} + \beta_{0,i} me(n) + \beta'_{1,i} x(n)) \epsilon_i(n).$$

and

- b_{0,i}: Controls the fraction invested in the outside asset.
- β_{0,i} < 1: Controls the price elasticity of demand.</p>
- me(n): Log market equity.

• x(n): Stock characteristics (e.g., log book equity, profitability).

- $\beta_{1,i}$: Demand for characteristics.
- $\epsilon_i(n) \ge 0$: Latent demand.

An empirically tractable asset demand system

▶ The portfolio weight on stock *n* is

$$w_i(n) = rac{\delta_i(n)}{1 + \sum_{m \in \mathcal{N}_i} \delta_i(m)},$$

where

$$\delta_i(n) = \exp(b_{0,i} + \beta_{0,i}me(n) + \beta'_{1,i}x(n))\epsilon_i(n).$$

A passive portfolio using market weights is replicated by

•
$$\beta_{0,i} = 1$$

• $\beta_{1,i} = 0$
• $\epsilon_i(n) = 1.$

Solve for asset prices by imposing market clearing

Market clearing

$$ME(n) = \sum_{i=1}^{l} A_i w_i(n, \mathbf{me}, \mathbf{x}, \epsilon).$$

- KY19 show that a unique equilibrium exists if demand is downward sloping for all investors (i.e., β_{0,i} < 1).</p>
- Despite this high-dimensional, nonlinear system in asset prices, we will discuss a simple algorithm to solve it quickly.

Lessons learned

Assumptions commonly made in empirical asset pricing,

- 1. Factor loadings depend on characteristics,
- 2. Alphas depend on characteristics,

have a convenient implication for optimal portfolios.

- Optimal demand for stock n only depends on that stock's characteristics and a scalar that encodes the information of all other stocks.
- We introduced an empirically-tractable model of the demand curve that adopts this structure and matches the lognormal property of portfolio weights.