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Towards an empirically-tractable model of demand
� Wish list for our model:

1. Nests modern portfolio theory as a special case.
2. Empirically tractable.
3. Sufficiently flexible to allow for inelastic demand curves.
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� Standard mean-variance portfolio choice implies

w =
1

γ
Σ−1μ.

� If we model μ(n) as a function of characteristics of stock n,
x(n), as in modern empirical asset pricing, it seems intractable
as characteristics of all stocks matter (via Σ−1).

� Key insight: Solution simplifies under realistic assumptions to

w(n) =
b′x(n)

c
,

where c encodes the information of all other stocks.
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Various micro-foundations lead to a demand system

� Various micro-foundations.
� Mean-variance portfolio choice (Markowitz 1952).
� Portfolio choice with hedging demand (Merton 1973).
� Private information and imperfect competition (Kyle 1989).
� Heterogeneous beliefs.
� Institutional asset pricing with constraints.
� Direct preferences for characteristics such as ESG.

� Can be expressed as the same portfolio demand function (see
KRY23).

� However, demand elasticities depend on structural parameters
in different ways.
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Investor types, preferences, and technology

� We consider two broad classes of investors: Quants and
Fundamental investors.
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E [− exp (−γiA1i)] ,

with risk aversion coefficients γi =
1
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� We consider two broad classes of investors: Quants and
Fundamental investors.

� We have i = 1, . . . , Ix , x = Q,F , investors of each type.

� Investors have CARA preferences

max
qi

E [− exp (−γiA1i)] ,

with risk aversion coefficients γi =
1

τi Ai0
and initial assets Ai0.

� Investors allocate capital to n = 1, . . . ,N assets.

� Intra-period budget constraint:

A0i = q ′
iP0 + Q0

i ,

� Dividends are given by D1, which equal P1 in a static model.
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Beliefs: Quant investors (KY19)
� Let R1 = P1 − P0 be the (dollar) return.
� Quants reason in terms of factor models and try to discover

alpha as a function of asset characteristics

R1 = ai + βiR
m
1 + η1,

μi = αi + βiΛ,

where μi = Ei [R1] and Var (η1) = σ2I .
� Hence, the covariance matrix of returns is

Σi = βiβ
′
i + σ2I .
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alpha as a function of asset characteristics

R1 = ai + βiR
m
1 + η1,

μi = αi + βiΛ,

where μi = Ei [R1] and Var (η1) = σ2I .
� Hence, the covariance matrix of returns is

Σi = βiβ
′
i + σ2I .

� Key: Alphas and betas are affine in characteristics,

βi (n) = λβ
i

′
x(n) + νβi (n),

αi (n) = λα
i
′x(n) + ναi (n).

5 / 14



Beliefs: Fundamental investors (KRY23)
� Let RF

1 = D1 − P0 be the long-run fundamental return.
� Fundamental investors think about the long-run expected

growth rate of fundamentals and their riskiness

D1 = g i + ρiF1 + ε1,

where Var (ε1) = σ2I .
� Hence, the covariance matrix of long-horizon returns is

ΣF
i = ρiρ

′
i + σ2I .
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� Fundamental investors think about the long-run expected

growth rate of fundamentals and their riskiness

D1 = g i + ρiF1 + ε1,

where Var (ε1) = σ2I .
� Hence, the covariance matrix of long-horizon returns is

ΣF
i = ρiρ

′
i + σ2I .

� Key: Factor loadings and expected growth are affine in
characteristics,

ρi(n) = λρ
i
′x(n) + νρi (n),

gi (n) = λg
i
′x(n) + νgi (n).
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Demand curves

� The quant’s optimal portfolio is

qQ
i =

1

γi
Σ−1

i μi .

� The optimal portfolio of the fundamental investor is

qF
i =

1

γi

(
ΣF

i

)−1
(g i − P0).
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Key insight
� In both cases, the demand curve takes the form

q i =
1

γ

(
v iv ′

i + σ2I
)−1 mi .
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Key insight
� In both cases, the demand curve takes the form

q i =
1

γ

(
v iv ′

i + σ2I
)−1 mi .

� Using the Woodburry matrix identity, we have

q i =
1

γσ2

(
I − v iv ′

i

v ′
iv i + σ2

)
mi

=
1

γσ2
(mi − civ i) ,

where ci =
v
′
imi

v
′
i v i+σ2 is a scalar that encodes the information of

all other stocks.
� The demand for stock n only depends on the characteristics of

stock n and a common scalar, ci .
� Intuition: The factor exposure and alpha are sufficient

statistics for the attractiveness of stock n.
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Three implementations of the mean-variance portfolio
� Estimate mean-variance portfolio among stocks in the S&P

500 index, subject to short-sale constraints.
1. Benchmark: Unrestricted mean and covariance matrix.
2. Factor structure: Impose FF 5-factor model on mean and

covariance.
3. Characteristics: Exponential-linear function of characteristics.

Factor
Statistic Benchmark structure Characteristics

Mean (%) 1.1 1.5 1.5
Standard deviation (%) 4.3 6.2 5.9
Certainty equivalent (%) 1.0 1.3 1.3
Correlation:

Factor structure 0.54
Characteristics 0.50 0.93
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Empirical regularity: Holdings are log-normally distributed
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An empirically tractable asset demand system
� Investors select stocks in a choice set Ni ⊂ {1, . . . ,N}.
� The portfolio weight on stock n is

wi (n) =
δi (n)

1 +
∑

m∈Ni
δi (m)

,

where

δi(n) = exp(b0,i + β0,ime(n) + β′
1,ix(n))εi (n).

and
� b0,i : Controls the fraction invested in the outside asset.
� β0,i < 1: Controls the price elasticity of demand.
� me(n): Log market equity.
� x(n): Stock characteristics (e.g., log book equity, profitability).
� β1,i : Demand for characteristics.
� εi(n) ≥ 0: Latent demand.
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An empirically tractable asset demand system

� The portfolio weight on stock n is

wi (n) =
δi (n)

1 +
∑

m∈Ni
δi (m)

,

where

δi(n) = exp(b0,i + β0,ime(n) + β′
1,ix(n))εi (n).

� A passive portfolio using market weights is replicated by
� β0,i = 1
� β1,i = 0
� εi(n) = 1.
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Solve for asset prices by imposing market clearing

� Market clearing

ME (n) =
I∑

i=1

Aiwi (n,me, x, ε).

� KY19 show that a unique equilibrium exists if demand is
downward sloping for all investors (i.e., β0,i < 1).

� Despite this high-dimensional, nonlinear system in asset
prices, we will discuss a simple algorithm to solve it quickly.
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Lessons learned

� Assumptions commonly made in empirical asset pricing,

1. Factor loadings depend on characteristics,
2. Alphas depend on characteristics,

have a convenient implication for optimal portfolios.

� Optimal demand for stock n only depends on that stock’s
characteristics and a scalar that encodes the information of all
other stocks.

� We introduced an empirically-tractable model of the demand
curve that adopts this structure and matches the lognormal
property of portfolio weights.
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